It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The present work reports on Yttrium based photocathodes. A Yttrium (Y) thin film is deposited via pulsed laser deposition (PLD) on the copper (Cu) back flange of a radio frequency (rf) gun for photocathode application. Because of a lower work function with respect to Cu, Y photocathodes are particularly appealing for the possibility to illuminate them with visible laser pulses, with the advantage of a higher energy per pulse, paving the way to high repetition rate photoinjectors, driven by conventional laser sources. In addition, working atλ∼400nmthe small energy difference between the Y work function (about 3 eV) and the laser photon energy reduces the contribution of the intrinsic emittance of the material. Photoelectrons, emitted by the thin film Y photocathode driven by the second harmonic of a Ti:Sapphire laser, have been characterized in terms of quantum efficiency and transverse emittance. Results have been compared with the theoretical ones obtained by the three-step model of Spicer for metallic photocathodes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer