Abstract

Spin current generators are critical components for spintronics-based information processing. In this work, we theoretically and computationally investigate the bulk spin photovoltaic (BSPV) effect for creating DC spin current under light illumination. The only requirement for BSPV is inversion symmetry breaking, thus it applies to a broad range of materials and can be readily integrated with existing semiconductor technologies. The BSPV effect is a cousin of the bulk photovoltaic (BPV) effect, whereby a DC charge current is generated under light. Thanks to the different selection rules on spin and charge currents, a pure spin current can be realized if the system possesses mirror symmetry or inversion-mirror symmetry. The mechanism of BSPV and the role of the electronic relaxation time τ are also elucidated. We apply our theory to several distinct materials, including monolayer transition metal dichalcogenides, anti-ferromagnetic bilayer MnBi2Te4, and the surface of topological crystalline insulator cubic SnTe.

Light offers a fast and non-invasive way to generate spin-currents in materials, however, this typically requires special ingredients such as magnetic materials, or circularly polarised light. In this theory work, the authors show how the nonlinear optical effect can generate a spin current, with the only requirement being broken inversion symmetry.

Details

Title
Pure spin photocurrent in non-centrosymmetric crystals: bulk spin photovoltaic effect
Author
Xu Haowei 1 ; Wang, Hua 1 ; Zhou, Jian 1   VIAFID ORCID Logo  ; Li, Ju 2   VIAFID ORCID Logo 

 Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2551800186
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.