It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The method of classical shadows proposed by Huang, Kueng, and Preskill heralds remarkable opportunities for quantum estimation with limited measurements. Yet its relationship to established quantum tomographic approaches, particularly those based on likelihood models, remains unclear. In this article, we investigate classical shadows through the lens of Bayesian mean estimation (BME). In direct tests on numerical data, BME is found to attain significantly lower error on average, but classical shadows prove remarkably more accurate in specific situations—such as high-fidelity ground truth states—which are improbable in a fully uniform Hilbert space. We then introduce an observable-oriented pseudo-likelihood that successfully emulates the dimension-independence and state-specific optimality of classical shadows, but within a Bayesian framework that ensures only physical states. Our research reveals how classical shadows effect important departures from conventional thinking in quantum state estimation, as well as the utility of Bayesian methods for uncovering and formalizing statistical assumptions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Oak Ridge National Laboratory, Quantum Information Science Group, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659)
2 University of Manchester, Department of Mathematics, Manchester, UK (GRID:grid.5379.8) (ISNI:0000000121662407)
3 Oak Ridge National Laboratory, Quantum Computational Science Group, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659)