It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We compute the N3LO gravitational quadratic-in-spin interactions at G4 in the post-Newtonian (PN) expansion via the effective field theory (EFT) of gravitating spinning objects for the first time. This result contributes at the 5PN order for maximally-spinning compact objects, adding the spinning case to the static sector at this PN accuracy. This sector requires extending the EFT of a spinning particle beyond linear order in the curvature to include higher-order operators quadratic in the curvature that are relevant at this PN order. We make use of a diagrammatic expansion in the worldline picture, and rely on our recent upgrade of the EFTofPNG code, which we further extend to handle this sector. Similar to the spin-orbit sector, we find that the contributing three-loop graphs give rise to divergences, logarithms, and transcendental numbers. However, in this sector all of these features conspire to cancel out from the final result, which contains only finite rational terms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Copenhagen, Niels Bohr International Academy, Niels Bohr Institute, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X); Institut de Physique Théorique, CEA & CNRS, Université Paris-Saclay, Gif-sur-Yvette, France (GRID:grid.5254.6)
2 University of Copenhagen, Niels Bohr International Academy, Niels Bohr Institute, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X)