Full text

Turn on search term navigation

Copyright © 2021 Hongze Chang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Nucleus pulposus (NP) is the core substance to maintain the homeostasis of intervertebral disc and stability of biomechanics. The insufficient supply of nutrition (especially glucose) is an important factor that leads to the degeneration of NP cells. circRNAs play an important role in the process of intervertebral disc degeneration (IDD) by regulating the functions of NP cells. However, glucose deprivation-related circRNAs and their functions in IDD have not been reported. In this study, the differentially expressed circRNAs in NP cells after 0, 6, 12, and 24 h of glucose deprivation culture were detected by a microarray assay. Besides, time series clustering analysis by STEM software obtained the differentially up- and downregulated circRNAs during glucose deficiency. Then, the main functions and pathways of up- and downregulated circRNAs were predicted by the functional enrichment analysis. By constructing the circRNA-miRNA regulatory network, the potential mechanisms of the most differentially expressed circRNAs were predicted. In addition, according to in vitro validation, circ_0075062 was upregulated in degenerating NP tissues and glucose deprivation-induced NP cell degeneration. Based on Sanger sequencing and RNase tolerance assay, circ_0075062 was the circular transcript. Interfering with circ_0075062 expression could potentially alleviate the imbalance of extracellular matrix (ECM) synthesis and degradation in the NP cells induced by glucose deprivation. Together, these findings help us gain a comprehensive understanding of the underlying mechanisms of IDD, and circ_0075062 may be a promising therapeutic target of IDD.

Details

Title
Comprehensive Profile Analysis of Differentially Expressed circRNAs in Glucose Deprivation-Induced Human Nucleus Pulposus Cell Degeneration
Author
Chang, Hongze 1 ; Wang, Hongzhang 2 ; Yang, Xiaolong 2 ; You, Kemin 2 ; Jiang, Mingwei 1 ; Cai, Feng 2 ; Zhang, Yan 2 ; Liu, Liang 2 ; Liu, Hui 2 ; Liu, Xiaodong 1   VIAFID ORCID Logo 

 Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China; Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China; Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai 200090, China 
 Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China 
Editor
Pei Li
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
23146133
e-ISSN
23146141
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2552746593
Copyright
Copyright © 2021 Hongze Chang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/