It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It is a very difficult work to sinter K0.5Na0.5NbO3 (KNN)-based materials with good reduction resistance in strong reducing atmosphere. 0.945K0.48Na0.52Nb0.96Ta0.04O3−0.055BaZrO3 + 0.03ZrO2 + y mol%MnO (KNNT−0.055BZ + 0.03Zr + yMn) ceramics sintered in reducing atmosphere were prepared successfully by conventional solid-state reaction methods. MnO dopant increases grain size at y = 5–8 due to strong lattice distortion and then decreases grain size at y = 9 due to much Mn4Nb2O9 accumulated at the grain boundary. MnO dopant as an excellent sintering aid can effectively reduce volatilization of alkali metal by decreasing the sintering temperature (Tsinter). Reducing alkali metal volatilization can greatly reduce oxygen vacancies and improve piezoelectric properties. MnO dopant can improve the anti-reduction properties. The KNNT−0.055BZ + 0.03Zr + yMn ceramics at y = 6–9 show outstanding anti-fatigue of unipolar piezoelectric strain under the synergistic effect of reduced oxygen vacancies due to reduced volatilization and increased grain size. Piezoelectric properties and temperature stability of KNNT−0.055BZ + 0.03Zr ceramics sintered in reducing atmosphere are improved simultaneously by MnO dopant. Optimum inverse piezoelectric coefficient (d33*) of ceramics at y = 8 reaches up to 480 pm/V under low driving electric field E = 20 kV/cm at room temperature, and its temperature stability of d33* reaches 158 °C. It will be an excellent lead-free material candidate for the preparation of multilayer piezoelectric actuators co-fired with nickel electrode.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing, China (GRID:grid.12527.33) (ISNI:0000 0001 0662 3178)
2 Beijing University of Posts and Telecommunications, School of Science, Beijing, China (GRID:grid.31880.32)