It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
As an important text coherence modeling task, sentence ordering aims to coherently organize a given set of unordered sentences. To achieve this goal, the most important step is to effectively capture and exploit global dependencies among these sentences. In this paper, we propose a novel and flexible external knowledge enhanced graph-based neural network for sentence ordering. Specifically, we first represent the input sentences as a graph, where various kinds of relations (i.e., entity-entity, sentence-sentence and entity-sentence) are exploited to make the graph representation more expressive and less noisy. Then, we introduce graph recurrent network to learn semantic representations of the sentences. To demonstrate the effectiveness of our model, we conduct experiments on several benchmark datasets. The experimental results and in-depth analysis show our model significantly outperforms the existing state-of-the-art models.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer