It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The as-cast CoCrFeNi high-entropy alloys show simple FCC structure and outstanding deformation ability at room temperature. Respectively, after 50% of deforming at room temperature and annealing at intermediate temperature range of 600 °C–800 °C for 2 h, CoCrFeNi alloys still show simple-phase FCC structure. It is noteworthy that CoCrFeNi high-entropy alloys can’t be strengthened by means of annealing, while deformation is an effective way to strengthen the alloys. It is investigated that the formation of sigma (σ) phase in high-entropy alloys is closely related to the difference of atomic radius (δ), the concentration of valence electron (VEC) and paired sigma-forming element (PSFE) content, and PSFE plays an crucial role. When PSFE > 40 at.%, 6.75 ≤ VEC ≤ 7.86, 4.0 ≤ δ ≤ 7.2, σ phase is prone to form in high-entropy alloys. In addition, alloying and processing route are two important factors that affect the sigma-formation in CoCrFeNi high-entropy alloys.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer