It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A continuous-time Markov process (CTMP) is a collection of variables indexed by a continuous quantity, time. It obeys the Markov property that the distribution over a future variable is independent of past variables given the state at the present time. We introduce continuous-time Markov process representations and algorithms for filtering, smoothing, expected sufficient statistics calculations, and model estimation, assuming no prior knowledge of continuous-time processes but some basic knowledge of probability and statistics. We begin by describing "flat" or unstructured Markov processes and then move to structured Markov processes (those arising from state spaces consisting of assignments to variables) including Kronecker, decision-diagram, and continuous-time Bayesian network representations. We provide the first connection between decision-diagrams and continuous-time Bayesian networks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer