Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study primarily aims to develop a method for estimating the range of flood sizes in small and medium ungauged watersheds in local river streams. In practice, several water control projects have insufficient streamflow information. To compensate for the lack of data, the streamflow propagation method (SPM) provides streamflow information for ungauged watersheds. The ranges of flood sizes for ungauged watersheds were generated using a specific flood distribution analysis based on the obtained streamflow data. Furthermore, the influence of rainfall information was analyzed to characterize the patterns of specific flood distributions. Rainfall location, intensity, and duration highly affected the shape of the specific flood distribution. Concentrated rainfall locations affected the patterns of the maximum specific flood distribution. The shape and size of the minimum specific flood distribution were dependent on the rainfall intensity and duration. The Creager envelope curve was used to generate equations for the maximum/minimum specific flood distribution for the study site. The ranges of the specific flood distributions were produced for each watershed size.

Details

Title
Spatial Recognition of Regional Maximum Floods in Ungauged Watersheds and Investigations of the Influence of Rainfall
Author
Nam-Won, Kim 1 ; Ki-Hyun, Kim 2 ; Jung, Yong 2 

 Water Resources Research Division, Water Resources and Environment Research Department, Korea Institute of Construction Technology, Goyang 10228, Korea; [email protected] 
 Department of Civil and Environmental Engineering, Wonkwang University, Iksan 54538, Korea; [email protected] 
First page
800
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554416986
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.