Full Text

Turn on search term navigation

© 2021 Reiter et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Introduction

Cardiac magnetic resonance (CMR) at ultrahigh field (UHF) offers the potential of high resolution and fast image acquisition. Both technical and physiological challenges associated with CMR at 7T require specific hardware and pulse sequences. This study aimed to assess the current status and existing, publicly available technology regarding the potential of a clinical application of 7T CMR.

Methods

Using a 7T MRI scanner and a commercially available radiofrequency coil, a total of 84 CMR examinations on 72 healthy volunteers (32 males, age 19–70 years, weight 50–103 kg) were obtained. Both electrocardiographic and acoustic triggering were employed. The data were analyzed regarding the diagnostic image quality and the influence of patient and hardware dependent factors. 50 complete short axis stacks and 35 four chamber CINE views were used for left ventricular (LV) and right ventricular (RV), mono-planar LV function, and RV fractional area change (FAC). Twenty-seven data sets included aortic flow measurements that were used to calculate stroke volumes. Subjective acceptance was obtained from all volunteers with a standardized questionnaire.

Results

Functional analysis showed good functions of LV (mean EF 56%), RV (mean EF 59%) and RV FAC (mean FAC 52%). Flow measurements showed congruent results with both ECG and ACT triggering. No significant influence of experimental parameters on the image quality of the LV was detected. Small fractions of 5.4% of LV and 2.5% of RV segments showed a non-diagnostic image quality. The nominal flip angle significantly influenced the RV image quality.

Conclusion

The results demonstrate that already now a commercially available 7T MRI system, without major methods developments, allows for a solid morphological and functional analysis similar to the clinically established CMR routine approach. This opens the door towards combing routine CMR in patients with development of advanced 7T technology.

Details

Title
On the way to routine cardiac MRI at 7 Tesla - a pilot study on consecutive 84 examinations
Author
Reiter, Theresa; Lohr, David; Hock, Michael; Ankenbrand, Markus Johannes; Stefanescu, Maria Roxana; Kosmala, Aleksander; Kaspar, Mathias; Juchem, Christoph; Terekhov, Maxim; Schreiber, Laura Maria
First page
e0252797
Section
Research Article
Publication year
2021
Publication date
Jul 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554596991
Copyright
© 2021 Reiter et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.