Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper considers the scheduling of preventive maintenance for the boilers, turbines, and distillers of power plants that produce electricity and desalinated water. It models the problem as a mathematical program (MP) that maximizes the sum of the minimal ratios of production to the demand of electricity and water during a planning time horizon. This objective encourages the plants’ production and enhances the chances of meeting consumers’ needs. It reduces the chance of power cuts and water shortages that may be caused by emergency disruptions of equipment on the network. To assess its performance and effectiveness, we test the MP on a real system consisting of 32 units and generate a preventive maintenance schedule for a time horizon of 52 weeks (one year). The generated schedule outperforms the schedule established by experts of the water plant; it induces, respectively, 16% and 12% increases in the surpluses while either matching or surpassing the total production. The sensitivity analysis further indicates that the generated schedule can handle unforeseen longer maintenance periods as well as a 120% increase in demand—a sizable realization in a country that heavily relies on electricity to acclimate to the harsh weather conditions. In addition, it suggests the robustness of the schedules with respect to increased demand. In summary, the MP model yields optimal systematic sustainable schedules.

Details

Title
A Mathematical Program for Scheduling Preventive Maintenance of Cogeneration Plants with Production
Author
Alhamad, Khaled 1   VIAFID ORCID Logo  ; Rym M’Hallah 2   VIAFID ORCID Logo  ; Lucas, Cormac 3 

 Laboratory Technology Department, College of Technological Studies, Public Authority for Applied Education and Training, P.O. Box 42325, Shuwaikh 70654, Kuwait 
 Department of Engineering, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Strand S42.1, London WC2R 2ND, UK; [email protected] 
 Department of Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, UK; [email protected] 
First page
1705
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554605294
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.