Full text

Turn on search term navigation

Copyright © 2021 Risheng Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Nanostructures with information processing play an important role in many fields. It is an excellent approach to the application that DNA nanostructures represented by DNA origami molecules combine with the hybrid chain reaction. In this paper, the assignment problem is mapped to a combinatorial graph on the DNA origami substrate. The graph has several modules corresponding to the time efficiency matrix of the assignment problem. The starting chain of the corresponding module is hybridized with the hairpin structure of the starting point, and the corresponding module is opened to emit light. The feasible solution to the problem can be obtained by observing the light-emitting fluorescent numbers of the opened modules. The fluorescent numbers of all the opened modules are added up on the same origami substrate, then different opening methods in different test tubes are compared, and the optimal solution is obtained.

Details

Title
Research on DNA Nanostructures Based on the Hybrid Chain Reaction for the Assignment Problem
Author
Wang, Risheng 1 ; Yin, Zhixiang 2   VIAFID ORCID Logo  ; Yang, Jing 1 ; Yang, Xinmu 1 ; Tang, Zhen 1 

 Anhui University of Science and Technology, Huainan, China 
 Shanghai University of Engineering Science, Shanghai, China 
Editor
Ghulam Mustafa
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
23144629
e-ISSN
23144785
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554891511
Copyright
Copyright © 2021 Risheng Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/