It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Thermal co-pyrolysis of corn cobs and polypropylene (PP) at low heating rate (thermal slow co-pyrolysis) has succeeded in separating bio-oil produced between oxygenated and non-oxygenated phases spontaneously. In co-pyrolysis, PP can sequester oxygen from bio-oil to convert part of bio-oil to non-oxygenated phase and can contribute partly non-oxygenated phase by PP carbon chain cracking. Catalytic fast co-pyrolysis has been commonly used to improve bio-oil yield and to improve non-oxygenated fraction of bio-oil. However, the catalytic fast co-pyrolysis is unable to obtain separate non-oxygenated fraction of bio-oil. In present work, zeolite catalyst was introduced in co-pyrolysis of corn cobs and PP at low heating rate to undertake catalytic slow co-pyrolysis in order to obtain synergistic effect of non-oxygenated fraction of bio-oil while obtaining separate non-oxygenated fraction of bio-oil. The present co-pyrolysis work was carried out in a stirred tank reactor at heating rate of 5 °C/min and maximum temperature of 500 °C. The composition of feed was varied at 0, 50 and 100%PP in the mixture of corn cob particles and PP granules. The experiment involved 3 catalytic configurations, i.e., no catalyst, ZSM5-38 and ZSM5-70, in which 38 and 70 represents the mole ratio of SI/Al in the catalysts. The results show that in slow co-pyrolysis of biomass-PP, the use of zeolite catalyst with high acidity suppressed the pyrolysis of PP to form wax and reduced bio-oil yield, and the synergistic effect was obtained as the co-pyrolysis used no catalyst and zeolite catalyst of ZSM5-70, while that using zeolite catalyst of ZSM5-38 reached negative synergistic effect. Utilization of catalyst generated high amount of aliphatic moieties, i.e. methyl, methine and methylene. With ZSM5 catalyst utilization, production of allyl decreased. Most of non-polar bio-oil fractions have similar or slightly higher heating values (HHVs) compared to those of commercial fuels. Branching index (BI) values of non-polar phase of bio-oil generated straight carbon chain with higher branches compared to those commercial fuels.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia