It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The accurate prediction of the mechanical properties of foundry alloys is a rather complex task given the substantial variability of metallurgical conditions that can be created during casting even in the presence of minimal variations in the constituents and in the process parameters. In this study an application of different intelligent methods of classification, based on the machine learning, to the estimation of the hardness of a traditional spheroidal cast iron and of a less common compact graphite cast iron is proposed. Microstructures are used as inputs to train the neural networks, while hardness is obtained as outputs. As general result, it is possible to admit that ‘light’ open source self-learning algorithms, combined with databases consisting of about 20-30 measures are already able to predict hardness properties with errors below 15 %.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer