It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An experimental investigation has been carried out to study the influence on the performance characteristics of a cutting tool material notably known as cemented tungsten carbide (WC-Co). A comparison has been documented between nanocrystalline diamond (NCD) and microcrystalline diamond (MCD) coatings deposited on two cemented tungsten carbide (WC-Co) substrates with the architectures of WC-Co/NCD and WC-Co/MCD, using hot filament chemical vapor deposition (HFCVD) technique. In the present work, the friction characteristics were studied using ball-on-disc type linear reciprocating micro-tribometer, under the application of 1–10 N normal loads, when sliding against smooth alumina (Al2O3) ceramic ball for the total duration of 20 min, under dry sliding condition. Nanoindentation tests were also conducted using Berkovich nanoindenter for the purpose of measurement of hardness and elastic modulus values. However, the average value of friction coefficient (COF) corresponding to MCD and NCD coatings decrease from ~0.37–0.32 and ~0.30–0.27, respectively when the load is increased from 1–10 N. However, for conventional WC-Co substrate the average COF increases from ~0.60–0.75, under the same input operating conditions. The wear tracks formed on the surfaces of NCD, MCD and WC-Co, after sliding were characterised using Raman spectroscopy and scanning electron microscopy (SEM) techniques. Therefore, the results will serve breakthrough information for the designer to design the cutting tool or mechanical component using this novel coating procedure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer