It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Several software tools for the simulation and analysis of biochemical reaction networks have been developed in the last decades; however, assessing and comparing their computational performance in executing the typical tasks of Computational Systems Biology can be limited by the lack of a standardized benchmarking approach. To overcome these limitations, we propose here a novel tool, named SMGen, designed to automatically generate synthetic models of reaction networks that, by construction, are characterized by both features (e.g., system connectivity, reaction discreteness) and non trivial emergent dynamics of real biochemical networks. The generation of synthetic models in SMGen is based on the definition of an undirected graph consisting of a single connected component, which generally results in a computationally demanding task. To avoid any burden in the execution time, SMGen exploits a Main-Worker paradigm to speed up the overall process. SMGen is also provided with a user-friendly Graphical User Interface that allows the user to easily set up all the parameters required to generate a set of synthetic models with any user-defined number of reactions and species. We analysed the computational performance of SMGen by generating batches of symmetric and asymmetric Reaction-based Models (RBMs) of increasing size, showing how a different number of reactions and/or species affects the generation time. Our results show that when the number of reactions is higher than the number of species, SMGen has to identify and correct high numbers of errors during the creation process of the RBMs, a circumstance that increases the overall running time. Still, SMGen can create synthetic models with 512 species and reactions in less than 7 seconds. The open-source code of SMGen is available on GitLab: https://gitlab.com/sgr34/smgen.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer