Abstract

Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post processing may be needed to improve their mechanical properties. For instance, AM Ti6Al4V samples may be brittle and incapable of withstanding dynamic mechanical loads due to their martensitic microstructure. The aim of this study was to apply two different heat treatment regimes (below and above β-transus) to investigate their effects on the microstructure and mechanical properties of porous Ti6Al4V specimens. After heat treatment, fine acicular α′ martensitic microstructure was transformed to a mixture of α and β phases. The ductility of the heat-treated specimens, as well as some mechanical properties such as hardness, plateau stress, and first maximum stress changed while the density and elastic gradient of the porous structure remained unchanged.

Details

Title
Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V
Author
Ahmadi, S M 1 ; R K Ashok Kumar Jain 1 ; Zadpoor, A A 1 ; Ayas, C 1 ; Popovich, V A 1 

 Delft University of Technology, Faculty of Mechanical, Maritime, and Materials Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands 
Publication year
2017
Publication date
Dec 2017
Publisher
IOP Publishing
ISSN
17578981
e-ISSN
1757899X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2556561798
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.