Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multi-structure assemblies consisting of gold nanoparticles and porphyrin were fabricated by using diblock copolymer, poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG-b-P4VP). The copolymer of PEG-b-P4VP was used in the formation of core-shell micelles in water, in which the P4VP block serves as the core, while the PEG block forms the shell. In the micellar core, gold nanoparticle and metalloporphyrin were dispersed through the axial coordination. Structural and morphological characterizations of the complex micelle were carried out by transmission electron microscopy, laser light scatting, and UV-visible spectroscopy. Metalloporphyrin in the complex micelle exhibited excellent photostability by reducing the generation of the singlet oxygen. This strategy may provide a novel approach to design photocatalysts that have target applications in photocatalysis and solar cells.

Details

Title
Fabrication of Hybrid Polymeric Micelles Containing AuNPs and Metalloporphyrin in the Core
Author
Wang, Yanxia; Yang, Heng; Chen, Si; Chen, Hua
First page
390
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2557230584
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.