It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Fuel cell has two essential problems, its cost and the durability, which hinder its commercialization. Platinum is the ideal catalyst that has high activity, stability and selectivity but has high cost. An attempt has been done to find a cheaper catalyst instead of platinum. Zinc oxide nanoparticles were synthesized via sol-gel method using zinc acetate and citric acid in basic media with different calcination temperatures (420, 520 and 620 °C). From X-ray diffraction (XRD) patterns, the calculated particles size is 7.7, 15.6 and 19.3 nm as the calcination temperature of 420, 520 and 620°C, respectively, indicating that the particles size increases with increasing the calcination temperature. Different concentrations (5 and 10 wt.%) of ZnO nanoparticles with 10 wt.% polyvinyl alcohol (PVA) were prepared and calcinated at 750 °C to get carbon/ZnO as a catalyst for fuel cell applications. A carbon core-shell surrounding by mono-disperse ZnO nanoparticles with large surface area that required for the new catalyst with believable morphology was shown by transmission electron microscope (TEM). Also, XRD presents high purity of the new composite with uniformly distinguishable peaks. Fourier transformation infrared (FTIR) spectroscopy shows the change in the carbon/ZnO nanoparticles spectra due to ZnO characteristic vibration band at 440-460 cm−1. Cyclic voltammetry (CV) exhibits a good promising catalytic activity and current density with oxidation behaviour is reported. Finally, ZnO used to enhance carbon electrochemically performance as a result of a novel non-precious catalyst.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Physics Department, Faculty of Science, Minia University, P.O. Box 61519 Minia, Egypt.; Renewable Energy Science & Engineering Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, P.O. Box 62511 Beni-Suef, Egypt
2 Physics Department, Faculty of Science, Minia University, P.O. Box 61519 Minia, Egypt.
3 Renewable Energy Science & Engineering Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, P.O. Box 62511 Beni-Suef, Egypt