It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Certifying the data recorded by the Compact Muon Solenoid (CMS) experiment at CERN is a crucial and demanding task as the data is used for publication of physics results. Anomalies caused by detector malfunctioning or sub-optimal data processing are difficult to enumerate a priori and occur rarely, making it difficult to use classical supervised classification. We base out prototype towards the automation of such procedure on a semi-supervised approach using deep autoencoders. We demonstrate the ability of the model to detect anomalies with high accuracy, when compared against the outcome of the fully supervised methods. We show that the model has great interpretability of the results, ascribing the origin of the problems in the data to a specific sub-detector or physics object. Finally, we address the issue of feature dependency on the LHC beam intensity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 CERN, Meyrin, Switzerland; Université Paris-Saclay, Orsay, France
2 CERN, Meyrin, Switzerland
3 CERN, Meyrin, Switzerland; Texas Tech University, Lubbock, Texas, U.S.
4 Université Paris-Saclay, Orsay, France
5 CERN, Meyrin, Switzerland; Jagiellonian University, Kraków, Poland