It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Non-coding RNA (ncRNA) and protein interactions play essential roles in various physiological and pathological processes. The experimental methods used for predicting ncRNA–protein interactions are time-consuming and labor-intensive. Therefore, there is an increasing demand for computational methods to accurately and efficiently predict ncRNA–protein interactions.
Results
In this work, we presented an ensemble deep learning-based method, EDLMFC, to predict ncRNA–protein interactions using the combination of multi-scale features, including primary sequence features, secondary structure sequence features, and tertiary structure features. Conjoint k-mer was used to extract protein/ncRNA sequence features, integrating tertiary structure features, then fed into an ensemble deep learning model, which combined convolutional neural network (CNN) to learn dominating biological information with bi-directional long short-term memory network (BLSTM) to capture long-range dependencies among the features identified by the CNN. Compared with other state-of-the-art methods under five-fold cross-validation, EDLMFC shows the best performance with accuracy of 93.8%, 89.7%, and 86.1% on RPI1807, NPInter v2.0, and RPI488 datasets, respectively. The results of the independent test demonstrated that EDLMFC can effectively predict potential ncRNA–protein interactions from different organisms. Furtherly, EDLMFC is also shown to predict hub ncRNAs and proteins presented in ncRNA–protein networks of Mus musculus successfully.
Conclusions
In general, our proposed method EDLMFC improved the accuracy of ncRNA–protein interaction predictions and anticipated providing some helpful guidance on ncRNA functions research. The source code of EDLMFC and the datasets used in this work are available at https://github.com/JingjingWang-87/EDLMFC.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer