It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
For reversible pump turbines, a sufficient hump safety margin has to be provided under small-flow and high-head conditions to avoid instability resulting from operations in the hump-shaped zone. On the other hand, under large flow conditions, cavitation easily occurs on the low-pressure edge of runner blades due to effects of low pressure and flow separation, sharply reducing the efficiency and lift head. Therefore, the hydraulic design of the pump turbine in pump mode is crucial for the properties of energy, cavitation and stability of the whole unit. A model runner (runner A) designed for a pumped storage power plant in China was demonstrated with insufficient hump safety margin and poor cavitation performance. To improve those deficiencies, optimization design was carried out on the geometric dimensions of the runner A, based on the computational fluid dynamics (CFD) analyses and model test results. The final model runner B was designed with less blade number Z and large blade wrap angle θ, to both alleviate the flow separation around the lower pressure edge of the blade and the non-uniform velocity distribution in the outlet area around high pressure edge. The model test results show that in comparison with the original runner A, the performances, such as efficiency, hump safety margin, cavitation and stability are improved in runner B.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 China Institute of Water Resources and Hydropower Research, Beijing 100038, China