It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
As a kind of clean energy resource, geothermal energy is widely utilized in many fields, especially for heating and ventilation through heat exchangers buried underground. The use of geothermal heat exchange system will contribute to energy saving as well as building sustainable, therefore it has become more and more popular in recent years. Rock-soil thermal conductivity plays a noticeable role in the performance of ground buried heat exchanger. In the present study, a new analytical model was proposed to describe the spatial structure of the multiphase rock-soil and relative position of solid, liquid and gas phase. Through analyzing the relationship among different phases and coding FORTRAN program, the model structure parameters can be obtained for the calculation of parallel thermal resistances. The expression of the thermal conductivity derived from the model was then applied to obtain the thermal conductivity of the Tripoli sand from North Africa, before the results were compared with previous tests. After comparative analysis, the newly proposed model in this study was proved accurate in predicting the thermal conductivity of the chosen soil with around 20% averaged relative error, which will contribute to the prediction of rock-soil thermal properties as well as the design of ground buried heat exchanger.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Building Environment and Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
2 Department of Engineering and Technology, School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK