It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent predictions on climate change indicate that high temperature episodes are expected to impact rice production and productivity worldwide. The present investigation was undertaken to assess the yield stability of 72 rice hybrids and their parental lines across three temperature regimes over two consecutive dry seasons using the additive main effect and multiplicative interaction (AMMI), genotype and genotype × environment interaction (GGE) stability model analysis. The combined ANOVA revealed that genotype × environment interaction (GEI) were significant due to the linear component for most of the traits studied. The AMMI and GGE biplot explained 57.2% and 69% of the observed genotypic variation for grain yield, respectively. Spikelet fertility was the most affected yield contributing trait and in contrast, plant height and tiller numbers were the least affected traits. In case of spikelet fertility, grain yield and other yield contributing traits, male parent contributed towards heat tolerance of the hybrids compared to the female parent. The parental lines G74 (IR58025B), G83 (IR40750R), G85 (C20R) and hybrids [G21 (IR58025A × KMR3); G3 (APMS6A × KMR3); G57 (IR68897A × KMR3) and G41 (IR79156A × RPHR1005)] were the most stable across the environments for grain yield. They can be considered as potential genotypes for cultivation under high temperature stress after evaluating under multi location trials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 ICAR - Indian Institute of Rice Research, Crop Improvement Section, Hyderabad, India (GRID:grid.464820.c)
2 ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, India (GRID:grid.464820.c)