Full text

Turn on search term navigation

© 2021 Ayre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Self-harm occurring within pregnancy and the postnatal year (“perinatal self-harm”) is a clinically important yet under-researched topic. Current research likely under-estimates prevalence due to methodological limitations. Electronic healthcare records (EHRs) provide a source of clinically rich data on perinatal self-harm.

Aims

(1) To create a Natural Language Processing (NLP) tool that can, with acceptable precision and recall, identify mentions of acts of perinatal self-harm within EHRs. (2) To use this tool to identify service-users who have self-harmed perinatally, based on their EHRs.

Methods

We used the Clinical Record Interactive Search system to extract de-identified EHRs of secondary mental healthcare service-users at South London and Maudsley NHS Foundation Trust. We developed a tool that applied several layers of linguistic processing based on the spaCy NLP library for Python. We evaluated mention-level performance in the following domains: span, status, temporality and polarity. Evaluation was done against a manually coded reference standard. Mention-level performance was reported as precision, recall, F-score and Cohen’s kappa for each domain. Performance was also assessed at ‘service-user’ level and explored whether a heuristic rule improved this. We report per-class statistics for service-user performance, as well as likelihood ratios and post-test probabilities.

Results

Mention-level performance: micro-averaged F-score, precision and recall for span, polarity and temporality >0.8. Kappa for status 0.68, temporality 0.62, polarity 0.91. Service-user level performance with heuristic: F-score, precision, recall of minority class 0.69, macro-averaged F-score 0.81, positive LR 9.4 (4.8–19), post-test probability 69.0% (53–82%). Considering the task difficulty, the tool performs well, although temporality was the attribute with the lowest level of annotator agreement.

Conclusions

It is feasible to develop an NLP tool that identifies, with acceptable validity, mentions of perinatal self-harm within EHRs, although with limitations regarding temporality. Using a heuristic rule, it can also function at a service-user-level.

Details

Title
Developing a Natural Language Processing tool to identify perinatal self-harm in electronic healthcare records
Author
Ayre, Karyn; Bittar, André; Kam, Joyce; Verma, Somain; Howard, Louise M; Dutta, Rina
First page
e0253809
Section
Research Article
Publication year
2021
Publication date
Aug 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558084933
Copyright
© 2021 Ayre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.