Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The high variability of aerosol particle concentrations, sizes and chemical composition makes their description challenging in atmospheric models. Aerosol–cloud interaction studies are usually focused on the activation of accumulation mode particles as cloud condensation nuclei (CCN). However, under specific conditions Aitken mode particles can also contribute to the number concentration of cloud droplets (Nd), leading to large uncertainties in predicted cloud properties on a global scale. We perform sensitivity studies with an adiabatic cloud parcel model to constrain conditions under which Aitken mode particles contribute to Nd. The simulations cover wide ranges of aerosol properties, such as total particle number concentration, hygroscopicity (κ) and mode diameters for accumulation and Aitken mode particles. Building upon the previously suggested concept of updraft (w)- and aerosol-limited regimes of cloud droplet formation, we show that activation of Aitken mode particles does not occur in w-limited regimes of accumulation mode particles. The transitional range between the regimes is broadened when Aitken mode particles contribute to Nd, as aerosol limitation requires much higher w than for aerosol size distributions with accumulation mode particles only. In the transitional regime, Nd is similarly dependent on w and κ. Therefore, we analyze the sensitivity of Nd to κ, ξ(κ), as a function of w to identify the value combinations above which Aitken mode particles can affect Nd. As ξ(κ) shows a minimum when the smallest activated particle size is in the range of the “Hoppel minimum” (0.06 µm Dmin 0.08 µm), the corresponding (wκ) pairs can be considered a threshold level above which Aitken mode particles have significant impact on Nd. This threshold is largely determined by the number concentration of accumulation mode particles and by the Aitken mode diameter. Our analysis of these thresholds results in a simple parametric framework and criterion to identify aerosol and updraft conditions under which Aitken mode particles are expected to affect aerosol–cloud interactions. Our results confirm that Aitken mode particles likely do not contribute to Nd in polluted air masses (urban, biomass burning) at moderate updraft velocities (w3 m s-1) but may be important in deep convective clouds. Under clean conditions, such as in the Amazon, the Arctic and remote ocean regions, hygroscopic Aitken mode particles can act as CCN at updrafts of w<1 m s-1.

Details

Title
Aitken mode particles as CCN in aerosol- and updraft-sensitive regimes of cloud droplet formation
Author
Pöhlker, Mira L 1 ; Zhang, Minghui 2   VIAFID ORCID Logo  ; Ramon Campos Braga 1 ; Krüger, Ovid O 1 ; Pöschl, Ulrich 1   VIAFID ORCID Logo  ; Ervens, Barbara 2   VIAFID ORCID Logo 

 Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany 
 Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France 
Pages
11723-11740
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558422785
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.