It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, we report the enhancement of the dielectric constant of barium titanate (BTO) through partial substitution of strontium to barium and crystallite size reduction through a high power ultrasonic treatment. The sample under investigation is Ba1-xSrxTiO3 or BST with x = 0 and 0.3 compositions prepared through mechanical alloying of SrCO3, BaCO3 and TiO2 precursors as the feedstock. All mechanically alloyed samples were crystalline powders with a single phase as confirmed by an x-ray diffractometer (XRD). The mechanically alloyed materials were consisted of multi-crystallite particles as confirmed both by XRD data analysis and particle size evaluation. Subject to an additional ultrasonic treatment, the multi-crystallite particles were fragmented toward mono-crystallite particles with the mean crystallite size about 52 nm after 12 hours irradiation. Even a smaller mean crystallite size (18 nm) with a narrower crystallites distribution then that of BTO was obtained in Ba1-xSrxTiO3 with x = 0.3. Such a narrow crystallite size distribution with a small mean crystallite size has superior dielectric constant over those of BTO and doped BTO with a large mean crystallite size. The highest dielectric constant of 3000 was obtained at a frequency of 273 Hz in doped BTO after 12 hours ultrasonic irradiation. The value is 12 times higher than those of BTO and doped BTO with a large crystallite size.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Metallurgy, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Cilegon Banten 42435, Indonesia
2 Department of Physics, FMIPA Universitas Indonesia, Depok 16424, Indonesia