Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Eco-drive is a widely used concept. It can improve fuel economy for different driving behaviors such as vehicle acceleration or accelerator pedal operation, deceleration or coasting while slowing down, and gear shift timing difference. The feasibility of improving the fuel economy of urban buses by applying eco-drive was verified by analyzing data from drivers who achieved high fuel efficiencies in urban buses with a high frequency of acceleration/deceleration and frequent operation. The items that were monitored for eco-drive were: rapid take-off/acceleration/deceleration, accelerator pedal gradient, coasting rate, shift indicator violation, average engine speed, over speed, and gear shifting under low-end engine speed. The monitoring method for each monitored item was set up, and an index was produced using driving data. A fuel economy prediction model was created using machine learning to determine the contribution of each index to the fuel economy. Furthermore, the contribution of each monitoring item was analyzed using the prediction model explainer. Accordingly, points (defined as the eco-drive score) were allocated for each monitoring item. It was verified that this score can represent the eco-drive characteristics based on the relationship between the score and fuel economy. In addition, it resulted in an average annual fuel economy improvement of 12.1%.

Details

Title
Fuel Economy Improvement of Urban Buses with Development of an Eco-Drive Scoring Algorithm Using Machine Learning
Author
Kim, Kibok 1 ; Park, Jinil 2 ; Lee, Jonghwa 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea; [email protected]; Vehicle Calibration Team, Tenergy, 145 Gwanggyo-ro, Yeongtong-gu, Suwon 16229, Korea 
 Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea; [email protected] 
First page
4471
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558788248
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.