Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Jamming is a big threat to the survival of a radar system. Therefore, the recognition of radar jamming signal type is a part of radar countermeasure. Recently, convolutional neural networks (CNNs) have shown their effectiveness in radar signal processing, including jamming signal recognition. However, most of existing CNN methods do not regard radar jamming as a complex value signal. In this study, a complex-valued CNN (CV-CNN) is investigated to fully explore the inherent characteristics of a radar jamming signal, and we find that we can obtain better recognition accuracy using this method compared with a real-valued CNN (RV-CNN). CV-CNNs contain more parameters, which need more inference time. To reduce the parameter redundancy and speed up the recognition time, a fast CV-CNN (F-CV-CNN), which is based on pruning, is proposed for radar jamming signal fast recognition. The experimental results show that the CV-CNN and F-CV-CNN methods obtain good recognition performance in terms of accuracy and speed. The proposed methods open a new window for future research, which shows a huge potential of CV-CNN-based methods for radar signal processing.

Details

Title
Fast Complex-Valued CNN for Radar Jamming Signal Recognition
Author
Zhang, Haoyu; Yu, Lei; Wei, Yinsheng
First page
2867
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558905323
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.