Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As a sound transmitting device that relies on the nonlinearity of a medium, a parametric array (PA) can generate high-directivity low-frequency signals using a small aperture transducer and high-frequency signals. Despite their relatively low source level, the PA is frequently used to measure the acoustic properties of materials in low-frequency regions owing to their high directivity in confined acoustic water tanks. Therefore, methods for improving the source level of secondary signals are of interest. Currently, there are two driving methods for PA: the dual-frequency PA and the broadband PA with amplitude modulation. In this study, we share the results of an elaborate and comparative experimental investigation of these two driving methods. Comparisons are made and discussed in terms of the intensity of the generated secondary signal and its characteristics in the frequency domain. Based on these factors, we confirmed that the broadband PA was more suitable as the sound source of the low-frequency characteristic measurement system of acoustic materials.

Details

Title
Comparative Experimental Investigation on Optimal Parametric Array Types
Author
Jung, Donghwan 1   VIAFID ORCID Logo  ; Song, Jiyoung 2 ; Kim, Jeasoo 2   VIAFID ORCID Logo  ; Lee, Jaehyuk 3 

 Underwater Vehicle Research Center, Korea Maritime and Ocean University, Busan 49112, Korea; [email protected] 
 Department of Ocean Engineering, Korea Maritime and Ocean University, Busan 49112, Korea; [email protected] 
 Vibration & Noise R&D Department, Daewoo Shipbuilding & Marine Engineering Co., Ltd., Geoje-si 53302, Korea; [email protected] 
First page
5085
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558931412
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.