Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A respiratory measurement system composed of pressure and airflow sensors was introduced to precisely control the respiratory condition during animal experiments. The flow sensor was a hot-wire thermal airflow meter with a directional detection and airflow temperature change compensation function based on MEMS technology, and the pressure sensor was a commercially available one also produced by MEMS. The artificial dead space in the system was minimized to the value of 0.11 mL by integrating the two sensors on the same plate (26.0 mm × 15.0 mm). A balloon made of a silicone resin with a hardness of A30 was utilized as the simulated lung system and applied to the elasticity evaluation of the respiratory system in a living rat. The inside of the respiratory system was normally pressurized without damage, and we confirmed that the developed system was able to evaluate the elasticity of the lung tissue in the rat by using the pressure value obtained at the quasi-static conditions in the case of the ventilation in the animal experiments.

Details

Title
Miniaturization of Respiratory Measurement System in Artificial Ventilator for Small Animal Experiments to Reduce Dead Space and Its Application to Lung Elasticity Evaluation
Author
Yoshida, Homare 1 ; Hasegawa, Yoshihiro 1 ; Matsushima, Miyoko 2 ; Sugiyama, Tomoshi 3 ; Kawabe, Tsutomu 2   VIAFID ORCID Logo  ; Shikida, Mitsuhiro 1 

 Department of Biomedical Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan; [email protected] (Y.H.); [email protected] (M.S.) 
 Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya 461-0047, Japan; [email protected] (M.M.); [email protected] (T.K.) 
 Department of Thoracic Surgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; [email protected] 
First page
5123
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558934333
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.