It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Hypovitaminosis C and vitamin C deficiency are common in critically ill patients and associated with organ dysfunction. Low vitamin C status often goes unnoticed because determination is challenging. The static oxidation reduction potential (sORP) reflects the amount of oxidative stress in the blood and is a potential suitable surrogate marker for vitamin C. sORP can be measured rapidly using the RedoxSYS system, a point-of-care device. This study aims to validate a model that estimates plasma vitamin C concentration and to determine the diagnostic accuracy of sORP to discriminate between decreased and higher plasma vitamin C concentrations.
Methods
Plasma vitamin C concentrations and sORP were measured in a mixed intensive care (IC) population. Our model estimating vitamin C from sORP was validated by assessing its accuracy in two datasets. Receiver operating characteristic (ROC) curves with areas under the curve (AUC) were constructed to show the diagnostic accuracy of sORP to identify and rule out hypovitaminosis C and vitamin C deficiency. Different cut-off values are provided.
Results
Plasma vitamin C concentration and sORP were measured in 117 samples in dataset 1 and 43 samples in dataset 2. Bias and precision (SD) were 1.3 ± 10.0 µmol/L and 3.9 ± 10.1 µmol/L in dataset 1 and 2, respectively. In patients with low plasma vitamin C concentrations, bias and precision were − 2.6 ± 5.1 µmol/L and − 1.1 ± 5.4 µmol in dataset 1 (n = 40) and 2 (n = 20), respectively. Optimal sORP cut-off values to differentiate hypovitaminosis C and vitamin C deficiency from higher plasma concentrations were found at 114.6 mV (AUC 0.91) and 124.7 mV (AUC 0.93), respectively.
Conclusion
sORP accurately estimates low plasma vitamin C concentrations and can be used to screen for hypovitaminosis C and vitamin C deficiency in critically ill patients. A validated model and multiple sORP cut-off values are presented for subgroup analysis in clinical trials or usage in clinical practice.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Amsterdam UMC, Department of Intensive Care Medicine, Amsterdam, The Netherlands (GRID:grid.509540.d) (ISNI:0000 0004 6880 3010); Research VUmc Intensive Care (REVIVE), Amsterdam, The Netherlands (GRID:grid.509540.d); Amsterdam Medical Data Science (AMDS), Amsterdam, The Netherlands (GRID:grid.509540.d); Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands (GRID:grid.509540.d); Amsterdam Infection and Immunity (AII), Amsterdam, The Netherlands (GRID:grid.509540.d)
2 Haga Teaching Hospital, LabWest, The Hague, The Netherlands (GRID:grid.413591.b) (ISNI:0000 0004 0568 6689)