Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study showed the effect of amoxicillin (AMO), and oxytetracycline (OXY) at a concentration of 512 µg mL−1, and sulfamethoxazole (SMX), and metronidazole (MET) at a concentration of 1024 µg mL−1 on the efficiency of anaerobic digestion (AD) of sewage sludge (SS) and cattle slurry (CS). The production of biogas and methane (CH4) content, and the concentration of volatile fatty acids (VFAs) was analyzed in this study. Other determinations included the concentration of the mcrA gene, which catalyzes the methanogenesis, and analysis of MSC and MST gene concentration, characteristic of the families Methanosarcinaceae and Methanosaetaceae (Archaea). Both substrates differed in the composition of microbial communities, and in the sensitivity of these microorganisms to particular antimicrobial substances. Metronidazole inhibited SS fermentation to the greatest extent (sixfold decrease in biogas production and over 50% decrease in the content of CH4). The lowest concentrations of the mcrA gene (106 gD−1) were observed in CS and SS digestates with MET. A decline in the number of copies of the MSC and MST genes was noted in most of the digestate samples with antimicrobials supplementation. Due to selective pressure, antimicrobials led to a considerably lowered efficiency of the AD process and induced changes in the structure of methanogenic biodiversity.

Details

Title
The Impact of Antimicrobial Substances on the Methanogenic Community during Methane Fermentation of Sewage Sludge and Cattle Slurry
Author
Koniuszewska, Izabela; Czatzkowska, Małgorzata  VIAFID ORCID Logo  ; Harnisz, Monika  VIAFID ORCID Logo 
First page
369
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2559414410
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.