Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The terrestrial forest carbon pool is poorly quantified, in particular in regions with low forest inventory capacity. By combining multiple satellite observations of synthetic aperture radar (SAR) backscatter around the year 2010, we generated a global, spatially explicit dataset of above-ground live biomass (AGB; dry mass) stored in forests with a spatial resolution of 1 ha. Using an extensive database of 110 897 AGB measurements from field inventory plots, we show that the spatial patterns and magnitude of AGB are well captured in our map with the exception of regional uncertainties in high-carbon-stock forests with AGB >250 Mgha-1, where the retrieval was effectively based on a single radar observation. With a total global AGB of 522 Pg, our estimate of the terrestrial biomass pool in forests is lower than most estimates published in the literature (426–571 Pg). Nonetheless, our dataset increases knowledge on the spatial distribution of AGB compared to the Global Forest Resources Assessment (FRA) by the Food and Agriculture Organization (FAO) and highlights the impact of a country's national inventory capacity on the accuracy of the biomass statistics reported to the FRA. We also reassessed previous remote sensing AGB maps and identified major biases compared to inventory data, up to 120 % of the inventory value in dry tropical forests, in the subtropics and temperate zone. Because of the high level of detail and the overall reliability of the AGB spatial patterns, our global dataset of AGB is likely to have significant impacts on climate, carbon, and socio-economic modelling schemes and provides a crucial baseline in future carbon stock change estimates. The dataset is available at 10.1594/PANGAEA.894711 (Santoro, 2018).

Details

Title
The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations
Author
Santoro, Maurizio 1   VIAFID ORCID Logo  ; Cartus, Oliver 1 ; Carvalhais, Nuno 2   VIAFID ORCID Logo  ; Rozendaal, Danaë M A 3 ; Avitabile, Valerio 4   VIAFID ORCID Logo  ; Araza, Arnan 5   VIAFID ORCID Logo  ; de Bruin, Sytze 5   VIAFID ORCID Logo  ; Herold, Martin 5 ; Quegan, Shaun 6 ; Rodríguez-Veiga, Pedro 7   VIAFID ORCID Logo  ; Balzter, Heiko 7 ; Carreiras, João 6 ; Schepaschenko, Dmitry 8   VIAFID ORCID Logo  ; Korets, Mikhail 9 ; Shimada, Masanobu 10   VIAFID ORCID Logo  ; Itoh, Takuya 11 ; Álvaro Moreno Martínez 12   VIAFID ORCID Logo  ; Cavlovic, Jura 13 ; Gatti, Roberto Cazzolla 14 ; Polyanna da Conceição Bispo 15   VIAFID ORCID Logo  ; Dewnath, Nasheta 16 ; Labrière, Nicolas 17 ; Liang, Jingjing 18 ; Lindsell, Jeremy 19 ; Mitchard, Edward T A 20   VIAFID ORCID Logo  ; Morel, Alexandra 21 ; Pacheco Pascagaza, Ana Maria 15 ; Ryan, Casey M 20 ; Ferry Slik 22 ; Gaia Vaglio Laurin 23 ; Verbeeck, Hans 24   VIAFID ORCID Logo  ; Wijaya, Arief 25   VIAFID ORCID Logo  ; Willcock, Simon 26   VIAFID ORCID Logo 

 Gamma Remote Sensing, 3073 Gümligen, Switzerland 
 Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745 Jena, Germany; Departamento de Ciências e Engenharia do Ambiente, DCEA, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 
 Laboratory of Geo-Information Science and Remote Sensing, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands; Plant Production Systems Group, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, the Netherlands; Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, the Netherlands 
 Joint Research Centre, European Commission, Ispra, Italy 
 Laboratory of Geo-Information Science and Remote Sensing, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands 
 National Centre for Earth Observation (NCEO), University of Sheffield, Sheffield, S3 7RH, UK 
 Centre for Landscape and Climate Research, School of Geography, Geology and the Environment, University of Leicester, LE1 7RH, UK; National Centre for Earth Observation (NCEO), Leicester, LE1 7RH, UK 
 International Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg, Austria; Center of Forest Ecology and Productivity, Russian Academy of Sciences, Profsoyuznaya 84/32/14, 117997 Moscow, Russia; Institute of Ecology and Geography, Siberian Federal University, 79 Svobodny Prospect,660041 Krasnoyarsk, Russia 
 Laboratory of Ecophysiology of Permafrost Systems, V.N. Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences – separated department of the KSC SB RAS, 660036 Krasnoyarsk, Russia 
10  Tokyo Denki University, School of Science and Engineering, Division of Architectural, Civil and Environmental Engineering, Ishizaka, Hatoyama, Hiki, Saitama, 350-0394, Japan 
11  Remote Sensing Technology Center of Japan, Tokyu Reit Toranomon Bldg, 3f, 3-17-1 Toranomon, Minato-Ku, Tokyo, 105-0001, Japan 
12  Image Processing Laboratory (IPL), Universitat de València, València, Spain; Numerical Terradynamic Simulation Group (NTSG), University of Montana, Missoula, MT, USA 
13  Department of Forest Inventory and Management, Faculty of Forestry and Wood Technology, University of Zagreb, Svetosimunska cesta 23, 10000 Zagreb, Croatia 
14  Biological Institute, Tomsk State University, 634050 Tomsk, Russia 
15  Centre for Landscape and Climate Research, School of Geography, Geology and the Environment, University of Leicester, LE1 7RH, UK; Department of Geography, School of Environment, Education and Development, University of Manchester, Oxford Road, M13 9PL Manchester, UK 
16  Guyana Forestry Commission, 1 Water Street, Kingston, Georgetown, Guyana 
17  Laboratoire Évolution et Diversité Biologique, UMR 5174 (CNRS/IRD/UPS), 31062 Toulouse CEDEX 9, France 
18  Department of Forestry and Natural Resources, Purdue University, 715 W State St, West Lafayette, IN 47907, USA 
19  A Rocha International, Cambridge, UK; The RSPB Centre for Conservation Science, Bedfordshire, UK 
20  School of GeoSciences, University of Edinburgh, Crew Building, The King's Buildings, Edinburgh, EH9 3FF, UK 
21  Department of Geography and Environmental Sciences, University of Dundee, Dundee, UK 
22  Faculty of Science, University Brunei Darussalam, Jln Tungku Link, Gadong, BE1410, Brunei Darussalam amma Remote Sensing, 3073 Gümligen, Switzerland 
23  Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy 
24  CAVElab – Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Coupure Links 653, 9000 Gent, Belgium 
25  Department of Research, Data and Innovation, World Resources Institute Indonesia (WRI Indonesia), Wisma PMI, 3rd Floor, Jl. Wijaya I/63, Kebayoran Baru, South Jakarta, Indonesia 
26  School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK 
Pages
3927-3950
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
18663508
e-ISSN
18663516
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2560053250
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.