It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In fact, many modern real-world optimization problems have the great number of variables (more than 1000), which values should be optimized. These problems have been titled as large-scale global optimization (LSGO) problems. Typical LSGO problems can be formulated as the global optimization of a continuous objective function presented by a computational model of «Black-Box» (BB) type. For the BB optimization problem one can request only input and output values. LSGO problems are the challenge for the majority of evolutionary and metaheuristic algorithms. In this paper, we have described details on a new DECC-RAG algorithm based on a random adaptive grouping (RAG) algorithm for the cooperative coevolution framework and the well-known SaNSDE algorithm. We have tuned the number of subcomponents for RAG algorithm and have demonstrated that the proposed DECC-RAG algorithm outperforms some state-of-the-art algorithms with benchmark problems taken from the IEEE CEC’2010 and CEC’2013 competitions on LSGO.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarskiy Rabochiy av., Krasnoyarsk, 660037, Russia
2 Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarskiy Rabochiy av., Krasnoyarsk, 660037, Russia; Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
3 Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia