It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Reinforced concrete Dapped End Beams (DEB), also known as half-joints, are used in bridges and many other pre-cast constructions to reduce end depth and increase lateral stability. Dapped end beams are expected to experience dynamic loads when used in bridges, the available past studies on the behavior and damage assessment of DEBs are mainly for static loading. The reinforcement layouts of DEBs can influence the behavior of these shear critical members under impact loading. Better understanding of the crack propagation and failure patter of DEBs under dynamics loads is required for safe and economic design of these structural elements. A non-linear numerical transient study was conducted to investigate the dynamic performance of DEBs with different reinforcement layouts. Advanced material models capable of including strain-rate effect and material non-linearity to capture realistic behavior of DEBs were used. The simulated models in finite element package LS-DYNA were verified and used to conduct detailed parametric study to investigate the impact behavior of DEBs with different reinforcement layouts. Sensitivity of concrete compressive strength, main dapped end reinforcement and special shear reinforcement detailing on the structural reliability of DEBs were studied.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Engineering, Abu Dhabi University, UAE