It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study simulates the hydraulic fracturing process based on ABAQUS, and obtains the results of hydraulic fracturing fracture propagation under the influence of multi-parameters. Our research shows that:The effect of reservoir modification increases with the increase of injection rate of fracturing fluid. Under the condition of 8m3/min or above, the fracture can communicate with the fault zone 100m away from the bottom of the well. Under the condition of 10cP, the effect of fracture propagation in formation is good. Under the condition of 50cP, the effect of fracture propagation in fracture zone is good. Under the condition of 200cP, the effect of crack propagation is poor. When the injection volume of fracturing fluid is between 0 and 1440m3, the effect of fracture propagation increases gradually. When the injection volume of fracturing fluid is larger than 1440m3, the contribution of continuous injection become weak. The maximum vertical crustal stress results in the fracture extending to the depth. The maximum horizontal crustal stress results in the horizontal propagation of fractured fractures. This study analyzed the influence of formation parameters and hydraulic fracturing parameters on fracture propagation. It also plays an active role in predicting the effect of hydraulic fracturing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Sinopec North-West, China
2 China University of Petroleum, Beijing, China
3 Petrochina Oil&Gas Pipeline Control Center, China