Abstract

Thermoelectric (TE) composites, with photocured resin as the matrix and Ag2Se (AS) as the filler, are synthesized by a digital-light-processing (DLP) based 3D printer. The mixture of diurethane dimethacrylate (DUDMA) and isobornyl acrylate (IBOA) is used as a UV-curable resin because of their low viscosity and high miscibility. Scanning electron microscopy (FE-SEM) images confirm that the filler retains its shape and remains after the UV-curing process. After completing curing, the mechanical and thermoelectric properties of the composite with different AS contents were measured. The addition of the AS filler increases the thermoelectric properties of the cured resin. When the AS contents increase by 30 wt.%, the maximum power factor was obtained (~ 51.5 μW/m·K2 at room temperature). Additionally, due to the phonon scattering effect between the interfaces, the thermal conductivity of composite is lower than that of pristine photoresin. The maximum thermoelectric figure of merit (ZT) is ~ 0.12, which is achieved with 30 wt.% of AS at 300 K with the enhanced power factor and reduced thermal conductivity. This study presents a novel manufacturing method for a thermoelectric composite using 3D printing.

Details

Title
Enhanced thermoelectric performance of UV-curable silver (I) selenide-based composite for energy harvesting
Author
Park Dabin 1 ; Lee, Seonmin 1 ; Kim Jooheon 2 

 Chung-Ang University, School of Chemical Engineering & Materials Science, Seoul, Republic of Korea (GRID:grid.254224.7) (ISNI:0000 0001 0789 9563) 
 Chung-Ang University, School of Chemical Engineering & Materials Science, Seoul, Republic of Korea (GRID:grid.254224.7) (ISNI:0000 0001 0789 9563); Chung-Ang University, Department of Advance Materials Engineering, Anseong, Republic of Korea (GRID:grid.254224.7) (ISNI:0000 0001 0789 9563); Chung-Ang University, Department of Intelligent Energy and Industry, Graduate School, Seoul, Republic of Korea (GRID:grid.254224.7) (ISNI:0000 0001 0789 9563) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2562072860
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.