Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since the Keccak algorithm was selected by the US National Institute of Standards and Technology (NIST) as the standard SHA-3 hash algorithm for replacing the currently used SHA-2 algorithm in 2015, various optimization methods have been studied in parallel and hardware environments. However, in a software environment, the SHA-3 algorithm is much slower than the existing SHA-2 family; therefore, the use of the SHA-3 algorithm is low in a limited environment using embedded devices such as a Wireless Sensor Networks (WSN) enviornment. In this article, we propose a software optimization method that can be used generally to break through the speed limit of SHA-3. We combine the θ, π, and ρ processes into one, reducing memory access to the internal state more efficiently than conventional software methods. In addition, we present a new SHA-3 implementation for the proposed method in the most constrained environment, the 8-bit AVR microcontroller. This new implementation method, which we call the chaining optimization methodology, implicitly performs the π process of the f-function while minimizing memory access to the internal state of SHA-3. Through this, it achieves up to 26.1% performance improvement compared to the previous implementation in an AVR microcontroller and reduces the performance gap with the SHA-2 family to the maximum. Finally, we apply our SHA-3 implementation in Hash_Deterministic Random Bit Generator (Hash_DRBG), one of the upper algorithms of a hash function, to prove the applicability of our chaining optimization methodology on 8-bit AVR MCUs.

Details

Title
Chaining Optimization Methodology: A New SHA-3 Implementation on Low-End Microcontrollers
Author
Kim, Young Beom 1   VIAFID ORCID Logo  ; Taek-Young, Youn 2   VIAFID ORCID Logo  ; Seog Chung Seo 1   VIAFID ORCID Logo 

 Department of Financial Information Security, Kookmin University, Seoul 02707, Korea; [email protected] 
 Department of Industrial Security, Dankook University, Giheung-gu, Yongin-si (16891) 655, Korea 
First page
4324
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2562192117
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.