It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Costly and non-environment-friendly methods are used to improve the inferior behavior of recycled aggregate concrete (RAC). Conversely, the strength enrichment of concrete due to confinement provided by lateral reinforcement is ignored in the design of concrete compression members. The focus of this study is to investigate the role of pre-existing transverse reinforcement and different design strengths of concrete on the stress strain behavior of RAC. For this reason, stress-strain behavior of spiral steel confined concrete specimens having variable confinement pressure, recycled aggregates (RA) replacement percentage and design strength is investigated. The results show a drop in compressive strength of concrete with the increase in replacement percentage of RA. However, steel confinement has a positive role to counterbalance the adverse effect of RA replacement on concrete strength. Improved ductility and stress-strain behavior of RAC are observed with the increase in confinement pressure. Based on the results, the un-utilized pre-existing steel spiral reinforcement in the concrete compression members can offset the inferior performance of RAC resulting into sustainable and cost-effective construction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Engineering, RMIT University, 376-392 Swanston St, Melbourne, Victoria-3001, Australia.