It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
One of the available methodologies for structural health monitoring (SHM) is based on strain field pattern recognition where, through the use of sensors capable of measuring strain on discrete points and machine learning techniques, it is possible to detect a damage event. In this study, strain data from fiber optic sensors (FOS), in particular fiber Bragg gratings (FBG), acquired through two experiments are used: an aluminum beam with 32 FBGs and CFRP beam provided with 20 FBGs, which serves as the main wing’s structure of an unmanned aerial vehicle (UAV). Both structures were subjected to dynamic loading for a pristine condition and later, for artificially damaged conditions. In the experiments presented in this paper the beams were provided with different amounts of sensors which were removed one by one in order to analyze the sensitivity of the damage detection methodology based on PCA to a change in the number of sensors. The results demonstrated that there are few sensors that contribute mostly to the methodology’s performance, these sensors are validated to be the ones located near the analyzed damage condition. Therefore, this study is the first step into the development of methodologies of damage localization using strains.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Grupo de Investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín, Circular 1 # 70-01, Colombia