Abstract

Background

Panoramic radiography is an imaging method for displaying maxillary and mandibular teeth together with their supporting structures. Panoramic radiography is frequently used in dental imaging due to its relatively low radiation dose, short imaging time, and low burden to the patient. We verified the diagnostic performance of an artificial intelligence (AI) system based on a deep convolutional neural network method to detect and number teeth on panoramic radiographs.

Methods

The data set included 2482 anonymized panoramic radiographs from adults from the archive of Eskisehir Osmangazi University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology. A Faster R-CNN Inception v2 model was used to develop an AI algorithm (CranioCatch, Eskisehir, Turkey) to automatically detect and number teeth on panoramic radiographs. Human observation and AI methods were compared on a test data set consisting of 249 panoramic radiographs. True positive, false positive, and false negative rates were calculated for each quadrant of the jaws. The sensitivity, precision, and F-measure values were estimated using a confusion matrix.

Results

The total numbers of true positive, false positive, and false negative results were 6940, 250, and 320 for all quadrants, respectively. Consequently, the estimated sensitivity, precision, and F-measure were 0.9559, 0.9652, and 0.9606, respectively.

Conclusions

The deep convolutional neural network system was successful in detecting and numbering teeth. Clinicians can use AI systems to detect and number teeth on panoramic radiographs, which may eventually replace evaluation by human observers and support decision making.

Details

Title
An artifıcial ıntelligence approach to automatic tooth detection and numbering in panoramic radiographs
Author
Bilgir, Elif; Bayrakdar, İbrahim Şevki; Özer Çelik; Kaan Orhan; Akkoca, Fatma; Sağlam, Hande; Alper Odabaş; Aslan, Ahmet Faruk; Ozcetin, Cemre; Kıllı, Musa; Rozylo-Kalinowska, Ingrid  VIAFID ORCID Logo 
Pages
1-9
Section
Research
Publication year
2021
Publication date
2021
Publisher
BioMed Central
e-ISSN
14712342
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2562566480
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.