It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The decrease in Cunninghamia lanceolata (Lamb.) production on continuously planted soil is an essential problem. In this study, two-year-old seedlings of two cultivars (a normal cultivar, NC, and a super cultivar, SC) were grown in two types of soil (not planted (NP) soil; continuously planted (CP) soil) with three watering regimes, and the interactive effects on plant growth and physiological traits were investigated in a greenhouse experiment. The water contents of the soil in the control (CK) (normal water content), medium water content (MWC) and low water content (LWC) treatments reached 75−80 %, 45−50 % and 20−25 % of the field water capacity, respectively.
Results
The results indicated that the CP soil had a negative effect on growth and physiological traits and that the LWC treatment caused even more severe and comprehensive negative effects. In both cultivars, the CP soil significantly decreased the height increment (HI), basal diameter increment (DI), dry matter accumulation (DMA), net photosynthetic rate (Pn), total chlorophyll content (TChl), carotenoid content (Caro) and photosynthetic nitrogen use efficiency (PNUE). Compared to the NP soil, the CP soil also decreased the proline and soluble protein contents, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) and increased the nitrogen:phosphorus ratio in roots, stems and leaves. The LWC treatment decreased growth and photosynthesis, changed ecological stoichiometry, induced oxidative stress, promoted water use efficiency and damaged chloroplast ultrastructure. Significant increases in ascorbate peroxidase (APX), peroxidase (POD), soluble protein and proline contents were found in the LWC treatment. Compared with the NC, the SC was more tolerant to the CP soil and water stress, as indicated by the higher levels of DMA, Pn, and WUE. After exposure to the CP soil and watering regimes, the decreases in biomass accumulation and gas exchange were more pronounced.
Conclusions
The combination of drought and CP soil may have detrimental effects on C. lanceolata growth, and low water content enhances the impacts of CP soil stress on C. lanceolata seedlings. The superiority of the SC over the NC is significant in Chinese fir plantation soil. Therefore, continuously planted soil can be utilized to cultivate improved varieties of C. lanceolata and maintain water capacity. This can improve their growth and physiological performance to a certain extent.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer