It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Oilseed rape (B. napus L.) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Soil properties and the presence of other soluble compounds or ions, cause a heterogeneous distribution of Cd.
Results
The aim of our study was to reveal the differential responses of B. napus to different Cd abundances. Herein, we found that high Cd (50 μM) severely inhibited the growth of B. napus, which was not repressed by low Cd (0.50 μM) under hydroponic culture system. ICP-MS assays showed that the Cd2+ concentrations in both shoots and roots under 50 μM Cd were over 10 times higher than those under 0.50 μM Cd. Under low Cd, the concentrations of only shoot Ca2+/Mn2+ and root Mn2+ were obviously changed (both reduced); under high Cd, the concentrations of most cations assayed were significantly altered in both shoots and roots except root Ca2+ and Mg2+. High-throughput transcriptomic profiling revealed a total of 18,021 and 1408 differentially expressed genes under high Cd and low Cd conditions, respectively. The biological categories related to the biosynthesis of plant cell wall components and response to external stimulus were over-accumulated under low Cd, whereas the terms involving photosynthesis, nitrogen transport and response, and cellular metal ion homeostasis were highly enriched under high Cd. Differential expression of the transporters responsible for Cd uptake (NRAMPs), transport (IRTs and ZIPs), sequestration (HMAs, ABCs, and CAXs), and detoxification (MTPs, PCR, MTs, and PCSs), and some other essential nutrient transporters were investigated, and gene co-expression network analysis revealed the core members of these Cd transporters. Some Cd transporter genes, especially NRAMPs and IRTs, showed opposite responsive patterns between high Cd and low Cd conditions.
Conclusions
Our findings would enrich our understanding of the interaction between essential nutrients and Cd, and might also provide suitable gene resources and important implications for the genetic improvement of plant Cd accumulation and resistance through molecular engineering of these core genes under varying Cd abundances in soils.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer