It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Estimation of nitrate nitrogen (NO3−–N) content in petioles is one of the key approaches for monitoring nitrogen (N) nutrition in crops. Rapid, non-destructive, and accurate evaluation of NO3−–N contents in cotton petioles under drip irrigation is of great significance.
Methods
In this study, we discussed the use of hyperspectral data to estimate NO3−–N contents in cotton petioles under drip irrigation at different N treatments and growth stages. The correlations among trilateral parameters and six vegetation indices and petiole NO3−–N contents were first investigated, after which a traditional regression model for petioles NO3−–N content was established. A wavelet neural network (WNN) model for estimating petiole NO3−–N content was also established. In addition, the performance of WNN was compared to those of random forest (RF), radial basis function neural network (RBF) and back propagation neural network (BP).
Results
Between the blue edge amplitude (Db) and blue edge area (SDb) of the blue edge parameters was the optimal index for the estimation model of petiole NO3−–N content. We found that the prediction results of the blue edge parameters and WNN were 7.3% higher than the coefficient of determination (R2) of the first derivative vegetation index and WNN. Root mean square error (RMSE) and mean absolute error (MAE) were 25.2% and 30.9% lower than first derivative vegetation, respectively, and the performance was better than that of RF, RBF and BP.
Conclusions
An inexpensive approach consisting of the WNN algorithm and blue edge parameters can be used to enhance the accuracy of NO3−–N content estimation in cotton petioles under drip irrigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer