It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A fully automated approach for designing metasurfaces whose unit cell may include metallic vias is proposed. Towards this aim, a ternary version of the particle swarm optimization (PSO) algorithm is employed in order to find the optimal metallic pattern and via-hole positions simultaneously. In the proposed design method, the upper surface of the unit cell is first pixelated. One of the possible three states of a metallic covered pixel, an uncovered etched pixel and a pixel containing a centered metalized via-hole is assigned to each pixel. The optimal state of each pixel is then determined by utilizing a ternary PSO algorithm to achieve favorable design goals. This method can be used for designing various metasurfaces as well as other via-assisted electromagnetic structures. As a proof of concept, the proposed method was applied to design two surfaces: a frequency selective surface with a minimum resonance frequency, and a linear-to-circular polarization converter with a maximum polarization conversion bandwidth. Comparison of the results with previous works confirms the efficiency and capability of the proposed method to design diverse metasurfaces in an automated fashion without the need for any theoretical or physical model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Iran University of Science and Technology, School of Electrical Engineering, Tehran, Iran (GRID:grid.411748.f) (ISNI:0000 0001 0387 0587)
2 Iran University of Science and Technology, School of Advanced Technologies, Tehran, Iran (GRID:grid.411748.f) (ISNI:0000 0001 0387 0587)
3 University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, Canada (GRID:grid.46078.3d) (ISNI:0000 0000 8644 1405)