Abstract

Materials forming the wall of a nuclear reactor pressure vessel (NRPV) can undergo in-service failure due to the presence of hydrogen, which enhances the fracture process known as hydrogen embrittlement (HE). A common way of avoiding this damage phenomenon is using a cladding material at the vessel wall side exposed to the hydrogenating source. This layer acts as a barrier for hydrogen diffusion and, hence, it protects the base material. In this paper, a numerical model of hydrogen diffusion assisted by stress and strain is used to analyse the hydrogen distribution, and hence the HE, in the pressure vessel wall of a real widely spread WWER-440 reactor considering two thickness for the cladding layer. Results show how the hydrogen accumulation is delayed as the thickness of the cladding layer increases, thus delaying the HE phenomenon affecting the structural integrity of the reactor.

Details

Title
Numerical simulation of hydrogen diffusion in the pressure vessel wall of a WWER-440 reactor
Author
Toribio, J 1 ; Vergara, D 1 ; Lorenzo, M 1 

 Fracture and Structural Integrity Research Group (FSIRG), University of Salamanca (USAL), Spain 
Publication year
2017
Publication date
Jul 2017
Publisher
IOP Publishing
ISSN
17578981
e-ISSN
1757899X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564070088
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.