It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Interactions between lignocellulose and ionic liquids have been studied by designed lignocellulose components models, and their complexes with 1-butyl-3-methylimidazolium chloride. All the structures were optimized by DFT methods and hydrogen bonds within lignocelluloses components, and their complexes with 1-butyl-3-methylimidazolium chloride were investigated by AIM calculations. Our calculated results demonstrate that when dissolved in ionic liquids, the stable intermolecular hydrogen bonds and weak π-stacking interactions between ionic liquids and lignocelluloses components reduce the energy of complex systems, which are advantageous for lignocelluloses components dissolution in ionic liquids. Moreover, there are deformation accrued for both lignocelluloses components and ionic liquids, which may be a prerequisite for lignocelluloses components dissolution in ionic liquids.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, PR China
2 Faculty of Science, Beijing University of Chemical Technology, Beijing, PR China