Abstract

Interactions between lignocellulose and ionic liquids have been studied by designed lignocellulose components models, and their complexes with 1-butyl-3-methylimidazolium chloride. All the structures were optimized by DFT methods and hydrogen bonds within lignocelluloses components, and their complexes with 1-butyl-3-methylimidazolium chloride were investigated by AIM calculations. Our calculated results demonstrate that when dissolved in ionic liquids, the stable intermolecular hydrogen bonds and weak π-stacking interactions between ionic liquids and lignocelluloses components reduce the energy of complex systems, which are advantageous for lignocelluloses components dissolution in ionic liquids. Moreover, there are deformation accrued for both lignocelluloses components and ionic liquids, which may be a prerequisite for lignocelluloses components dissolution in ionic liquids.

Details

Title
Theoretical study on interactions between lignocellulose components and ionic liquids
Author
Wang, J 1 ; Zhuang, W C 1 ; Shi, X Q 1 ; Cao, W L 2 

 School of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, PR China 
 Faculty of Science, Beijing University of Chemical Technology, Beijing, PR China 
Publication year
2017
Publication date
Sep 2017
Publisher
IOP Publishing
ISSN
17578981
e-ISSN
1757899X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564117489
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.