It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A concurrent strengthening process by high-pressure torsion (HPT) and fine precipitation hardening of an Al 2024 alloy has been studied. The HPT was conducted on disks of the alloys under an applied pressure of 6 GPa for 0.75 and 5 turns with a rotation speed of 1 rpm at room temperature. The HPT processing leads to microstructural refinement with an average grain size of ~240 nm and to an increase in hardness up to a saturation after 5 turns. Aging treatment is performed for sample after 5 turns at temperatures of 423 K for a maximum period up to 256 hours. The hardness increased above the hardness level after HPT processing through the subsequent aging. This study thus suggests that simultaneous hardening due to grain refinement and fine precipitation occurred by a combination of HPT processing and subsequent aging at 423 K.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Materials Science and Engineering, Faculty of Engineering Kyushu University, Fukuoka 819-0395, Japan; WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER, Japan; Kyushu University, Fukuoka 819-0395, Japan